江波


姓名:


江波

最后学位:  博士
职称: 教授
公共职务:
导师岗位: 博导
办公室: 611
电话: 65900131
Email: jiang.bo@mail.shufe.edu.cn




个人简介


江波,美国明尼苏达大学博士,上海财经大学信息管理与工程学院常聘教授、副院长;交叉科学研究院院长;国家级青年人才、上海市东方学者上海市青年拔尖人才;上海市运筹学会副理事长、中国运筹学会算法软件与应用分会常务理事、中国运筹学会数学规划分会理事。从事运筹优化、收益管理、机器学习等方向的研究。成果发表于运筹优化与机器学习的国际顶级期刊《Operations ResearchMathematics of Operations ResearchMathematical Programming、《INFORMS Journal on Computing》、SIAM Journal on Optimization》、《Journal of Machine Learning Research获得中国运筹学会青年科技奖、上海市自然科学奖二等奖、宝钢优秀教师奖等荣誉。主持多项国家自然科学基金项目包括自科重大项目课题。为顺丰、京东等国内多个标杆企业提供仓库优化、智能定价、智能选址等技术服务。


教授课程

博弈论

运筹学(高级)

优化理论与算法

管理学前沿与科学方法论


科研项目

1.国家自然科学基金重大项目课题,基于人工智能的数学规划算法,2024-012028-12在研,主持

2.国家自然科学基金面上项目,数据驱动的收益管理研究:运筹学理论与算法,2022-012025-12在研,主持

3.国家自然科学原创探索计划项目,大规模优化算法的理论与应用,2021-012023-12已结题,参与(排名2/10)

4.国家自然科学基金重点项目,大数据驱动的优化建模与高效算法,2019-012023-12已结题,参与(排名4/10)

5.国家自然科学基金面上项目,非负共轭多项式:张量表达,最优化算法及应用,2018-012021-12已结题,主持

6.国家自然科学基金青年项目低秩张量优化问题的模型、算法及应用,2015-012017-12结题,主持


教育背景

·  2011/03-2013/09, 美国明尼苏达大学(University of Minnesota),工业与系统工程系,博士, 导师: 张树中 教授

·  2008/08-2011/02, 香港中文大学,系统工程与工业工程系,攻读博士课程, 导师: 张树中 教授

·  2005/09-2008/07, 复旦大学,管理科学系,硕士, 导师: 黄学祥 教授

·  2001/09-2005/07, 华东师范大学,数学系,学士


代表性论文(全部论文请见:https://sites.google.com/site/isyebojiang/publications)
已发表论文:
  • B. Jiang, S. He, Z. Li, and S.Zhang, Moments Tensors, Hilbert's Identity, and k-wise Uncorrelated Random Variables, Mathematics of Operations Research, 39(3), 775-788, 2014.

  • S. He, B. Jiang, Z. Li, and S. Zhang, Probability Bounds for Polynomial Functions in Random Variables, Mathematics of Operations Research, 39(3), 889-907, 2014.

  • B. Jiang, S. Ma, and S. Zhang, Tensor Principal Component Analysis via Convex Optimization, Mathematical Programming, 150, 423-457, 2015.

  • B. Jiang, Z. Li, and S. Zhang, Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations, SIAM Journal on Matrix Analysis and Applications, 37(1), 381-408, 2016.

  • B. Jiang, Z. Li, and S. Zhang, On Cones of Nonnegative Quartic Forms, Foundations of Computational Mathematics, 17(1), 161-197, 2017.

  • B. Jiang, T. Lin, and S. Zhang, A Unified Adaptive Tensor Approximation Scheme to Accelerate Composite Convex Optimization, SIAM Journal on Optimization, 30(4), 2897-2926, 2020.

  • X. Chen, S. He, B. Jiang, C. Ryan and T. Zhang, The discrete moment problem with nonconvex shape constraints, Operations Research, 23 (3): 63-76, 2021.

  • B. Jiang, H. Wang, and S. Zhang, An Optimal High-Order Tensor Method for Convex Optimization, Mathematics of Operations Research, 46(4), 1390–1412, 2021.

  • X. Chen*, B. Jiang*, T. Lin, and S. Zhang, Accelerating Adaptive Cubic Regularization of Newton's Method via Random Sampling, Journal of Machine Learning Research, 23(90), 1-38,2022.

  • S. He, H. Hu, B. Jiang, and Z. Li, Approximating tensor norms via sphere covering: Bridging the gap between primal and dual, SIAM Journal on Optimization, 33(3), 2026-2088, 2023.

  • A. Desir*, V. Goyal, B. Jiang*, T. Xie and J. Zhang, Robust Assortment Optimization under the Markov Chain Choice Model, Operations Research, 72(4), 1595–1614, 2024.
  • C. He, S. Pan, X. Wang, and B. Jiang*, Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity, Proceedings of 41st International Conference on Machine Learning (ICML), 2024.
  • H. Hu, B. Jiang and Z. Li, Complexity and computation for the spectral norm and nuclear norm of order three tensors with one fixed dimension, SIAM Journal on Matrix Analysis and Applications, 46(1), 210-231, 2025.
  • Q. Deng, Q. Feng, W. Gao, D. Ge, B. Jiang*, Y. Jiang, J. Liu, T. Liu, C. Xue, Y. Ye and C. Zhang, An Enhanced ADMM-based Interior Point Method for Linear and Conic Optimization, INFORMS Journal on Computing, published online, 2024.
  • J. Guan, S. He, B. Jiang and Z. Li, l_p sphere covering and approximating nuclear p-norm, Mathematics of Operations Research, published online, 2024.
  • C. Zhang, C. He, Y. Jiang, C. Xue*, B. Jiang*, D. Ge and Y. Ye, A Homogeneous Second Order Descent Method for Nonconvex Optimization, Mathematics of Operations Research, accepted, 2025.
  • C. He, Y. Jiang, C. Zhang, D. Ge, B. Jiang and Y. Ye, Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type Methods, Mathematical Programming, accepted, 2025.

在修论文:

  • R. Chen, B. Jiang, C. Ryan and N. Zhang, A Data-driven approach to modeling assortment optimization: The tractable case of similar substitutes, Management Science, minor  revision, 2022.
  • B. Jiang, Z. Wang and N. Zhang, Revenue Management under a Price Alert Mechanism, Management Science, major revision, 2023. (preliminary version appears at WINE 2022.)
  • J. Guo, S. He, B. Jiang and Z. Wang, Solving Generalized Moment Problems: a Primal-Dual Approach within a General Framework, Mathematics of Operations Research, major revision, 2024.
  • Z. Huang, B. Jiang and Y. Jiang, Inexact and Implementable Accelerated Newton Proximal Extragradient Method for Convex Optimization, Journal of Optimization Theory and Applications, major revision, 2024.
  • B. Jiang, Z. Wang, C, Xue and N. Zhang, Assortment Optimization in the Presence of Focal Effect: Operational Insights and Efficient Algorithms, Production and Operations Management, major revision, 2024. (preliminary version appears at WINE 2023.)


荣誉奖励


上海财经大学学术新人奖;

中国运筹学会青年科技奖;

上海市青年拔尖人才;

上海市高校特聘教授(东方学者);

上海市科学技术奖自然科学奖二等奖 (排名:2/2);

宝钢优秀教师奖;


已毕业的博士生


朱喜华(2022届博士,毕业去向:上海商学院助理教授)

张南茜(2023届博士,毕业去向:加拿大毅伟商学院(Ivey Business School)助理教授




862ZrMjFUFyq