赵晓航
姓名:
|
赵晓航
|
最后学位:
|
博士
|
职称:
|
助理教授
|
公共职务:
|
|
导师岗位:
|
硕导
|
办公室:
|
405
|
电话:
|
|
Email:
|
xiaohangzhao@mail.shufe.edu.cn
|
个人简介
赵晓航,上海财经大学信息管理与工程学院常任轨助理教授。2021年毕业于美国特拉华大学,获金融服务分析专业博士学位。目前主要研究方向为金融科技,关注深度学习技术在金融科技领域中的各类应用,研究主题包括金融文本挖掘、智慧医疗、误信息管理等。欢迎志趣相投的同仁和学生与我联系!
教授课程
《Python程序设计》;《智能商务》;《计算思维导论》;《高级商务智能》
教育背景
2008年9月 - 2012年6月 中国人民大学,金融工程,经济学学士
2012年9月 - 2016年6月 美国特拉华大学,经济学,硕士
2016年9月 - 2021年6月 美国特拉华大学,金融服务分析,博士
-
2024《基于多源数据和深度学习的行业分类方法研究》,主持 ,国家自然科学基金项目(2024110530)
-
2023《信管-国金-信息技术产业行业指数研发》,主持 ,校企合作项目
-
Zhao, X.,
Fang, X., He, J., & Huang, L. (2023). Exploiting Expert Knowledge for
Assigning Firms to Industries: A Novel Deep Learning Method. MIS Quarterly, 47(3), 1147–1176. https://doi.org/10.25300/MISQ/2022/17171
-
Zhang, H., Zhao, X., Fang, X.,
& Chen, B. (2023). Proactive Resource Request for Disaster Response: A Deep
Learning-Based Optimization Model. Information Systems Research, 35(2),
528–550. https://doi.org/10.1287/isre.2022.0125
-
Fang, X., Che, S., Mao, M., Zhang, H.,
Zhao, M., & Zhao, X. (2024). Bias of AI-generated content: An
examination of news produced by large language models. Scientific Reports, 14(1), 5224. https://doi.org/10.1038/s41598-024-55686-2
-
Xie, J., Zhao, X., Liu, X., &
Fang, X. (2022). Care for the Mind Amid Chronic Diseases: An Interpretable
AI Approach Using IoT. INFORMS Workshop on Data Science.
-
Fang, X., Zhao, X., He, J., & Liu Sheng, O. R. (2019). A Deep Learning Approach to Industry Classification. INFORMS Workshop on Data Science.
-
Xie, J., Zhao, X., Liu, X., & Fang, X. Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT.
-
Mao, M., Zhao, X., & Fang, X. Early Detection of Misinformation for Infodemic Management: A Domain Adaptation Approach
-
Zhao, X., Fang, X., He, J., & Sheng, O. A Novel Document Embedding Approach to Industry Classification
-
Zhao, X., Deng, Y., He, J., & Fang, X. SPARSE: Session-based Personalized and Attribute-aware Recommendation based on Synergy Effects.
-
Li, Q., Han, X., Zhao, X., Fang, X., Liu, L., & Huang, H. Think as a Doctor: Embracing Prognostication and Patient Heterogeneity for Interpretable Mortality Prediction
-
2025 Best Paper Award, The
Hawaii International Conference on System Sciences
-
2022 Best Complete Paper
Nominee, INFORMS Workshop on Data Science
-
2020 One of the seven finalists
in the CMS Artificial Intelligence Health Outcomes Challenge
-
2019 Best Paper Award, INFORMS
Workshop on Data Science